60x^2-341x=259x-25

Simple and best practice solution for 60x^2-341x=259x-25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60x^2-341x=259x-25 equation:


Simplifying
60x2 + -341x = 259x + -25

Reorder the terms:
-341x + 60x2 = 259x + -25

Reorder the terms:
-341x + 60x2 = -25 + 259x

Solving
-341x + 60x2 = -25 + 259x

Solving for variable 'x'.

Reorder the terms:
25 + -341x + -259x + 60x2 = -25 + 259x + 25 + -259x

Combine like terms: -341x + -259x = -600x
25 + -600x + 60x2 = -25 + 259x + 25 + -259x

Reorder the terms:
25 + -600x + 60x2 = -25 + 25 + 259x + -259x

Combine like terms: -25 + 25 = 0
25 + -600x + 60x2 = 0 + 259x + -259x
25 + -600x + 60x2 = 259x + -259x

Combine like terms: 259x + -259x = 0
25 + -600x + 60x2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(5 + -120x + 12x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(5 + -120x + 12x2)' equal to zero and attempt to solve: Simplifying 5 + -120x + 12x2 = 0 Solving 5 + -120x + 12x2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 0.4166666667 + -10x + x2 = 0 Move the constant term to the right: Add '-0.4166666667' to each side of the equation. 0.4166666667 + -10x + -0.4166666667 + x2 = 0 + -0.4166666667 Reorder the terms: 0.4166666667 + -0.4166666667 + -10x + x2 = 0 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + -10x + x2 = 0 + -0.4166666667 -10x + x2 = 0 + -0.4166666667 Combine like terms: 0 + -0.4166666667 = -0.4166666667 -10x + x2 = -0.4166666667 The x term is -10x. Take half its coefficient (-5). Square it (25) and add it to both sides. Add '25' to each side of the equation. -10x + 25 + x2 = -0.4166666667 + 25 Reorder the terms: 25 + -10x + x2 = -0.4166666667 + 25 Combine like terms: -0.4166666667 + 25 = 24.5833333333 25 + -10x + x2 = 24.5833333333 Factor a perfect square on the left side: (x + -5)(x + -5) = 24.5833333333 Calculate the square root of the right side: 4.95815826 Break this problem into two subproblems by setting (x + -5) equal to 4.95815826 and -4.95815826.

Subproblem 1

x + -5 = 4.95815826 Simplifying x + -5 = 4.95815826 Reorder the terms: -5 + x = 4.95815826 Solving -5 + x = 4.95815826 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5' to each side of the equation. -5 + 5 + x = 4.95815826 + 5 Combine like terms: -5 + 5 = 0 0 + x = 4.95815826 + 5 x = 4.95815826 + 5 Combine like terms: 4.95815826 + 5 = 9.95815826 x = 9.95815826 Simplifying x = 9.95815826

Subproblem 2

x + -5 = -4.95815826 Simplifying x + -5 = -4.95815826 Reorder the terms: -5 + x = -4.95815826 Solving -5 + x = -4.95815826 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5' to each side of the equation. -5 + 5 + x = -4.95815826 + 5 Combine like terms: -5 + 5 = 0 0 + x = -4.95815826 + 5 x = -4.95815826 + 5 Combine like terms: -4.95815826 + 5 = 0.04184174 x = 0.04184174 Simplifying x = 0.04184174

Solution

The solution to the problem is based on the solutions from the subproblems. x = {9.95815826, 0.04184174}

Solution

x = {9.95815826, 0.04184174}

See similar equations:

| 7=-8x-3 | | =-8x-3 | | 4x+19=13x-89 | | 20w^2+73w+63= | | x^2+18+5=0 | | (7x+8)+(9x-25)=180 | | 3+3i-(8+2i)-7= | | 13-7x=137-35x | | 2x+2=0.5 | | (2x+3)(x+2)= | | 4(2t-3)=36 | | 8m+12n=28 | | 2y-4x=12 | | 5(2x-3)=30 | | 3(3t-5)=12 | | 2x*4=7x-1.33 | | 5(2k+3)=65 | | 3(2x-4)=39 | | x-(15+3x)=10-(15x-1) | | y=-4+4 | | -5t+15+9t=7t-1 | | 3p+15-3p=-27 | | 4(5m+3)=72 | | (7)=-8x-3 | | 5t+15+9t=7t-1 | | f(7)=-8x-3 | | 3(4m+5)=39 | | 9x-22=77 | | 3(4m+5)=3c | | j+2=4 | | 28x-56+8=28x-48 | | (9x-5y)(2x-7y)=0 |

Equations solver categories